Hybrid RVGA-ENM for Turkey Electricity Demand Forecasting
نویسنده
چکیده
Electricity demand forecasting model based on single algorithm at least have two problems related to local optima and computational cost. We consider to utilised the hybrid real value genetic algorithm and extended Nelder-Mead to solved local optima and reduced the number of iteration. The model is known as the hybrid Real-Value GA and Extended Nelder-Mead (RVGA-ENM). The GA has been enhanced to accept real value while the Nelder-Mead local search is extended to assist in overcoming the local optima problem. The actual electricity demand data of Turkey were used in the experiments to evaluate the performance of the proposed model. Results of the proposed model were compared to the hybrid GA and Nelder-Mead original, Real Code Genetic Algorithm and Particle Swarm Optimisation. Through our evaluation, the proposed hybrid model produced higher accuracy for electricity demand estimation. This model can be used to assist decision-makers in forecasting electricity demand.
منابع مشابه
Analysis and Modeling for China’s Electricity Demand Forecasting Using a Hybrid Method Based on Multiple Regression and Extreme Learning Machine: A View from Carbon Emission
The power industry is the main battlefield of CO2 emission reduction, which plays an important role in the implementation and development of the low carbon economy. The forecasting of electricity demand can provide a scientific basis for the country to formulate a power industry development strategy and further promote the sustained, healthy and rapid development of the national economy. Under ...
متن کاملAnalysis and Modeling for China's Electricity Demand Forecasting Based on a New Mathematical Hybrid Method
Electricity demand forecasting can provide the scientific basis for the country to formulate the power industry development strategy and the power-generating target, which further promotes the sustainable, healthy and rapid development of the national economy. In this paper, a new mathematical hybrid method is proposed to forecast electricity demand. In line with electricity demand feature, the...
متن کاملHybrid Forecasting Approach Based on GRNN Neural Network and SVR Machine for Electricity Demand Forecasting
Accurate electric power demand forecasting plays a key role in electricity markets and power systems. The electric power demand is usually a non-linear problem due to various unknown reasons, which make it difficult to get accurate prediction by traditional methods. The purpose of this paper is to propose a novel hybrid forecasting method for managing and scheduling the electricity power. EEMD-...
متن کاملApplication of a New Hybrid Method for Day-Ahead Energy Price Forecasting in Iranian Electricity Market
Abstract- In a typical competitive electricity market, a large number of short-term and long-term contracts are set on basis of energy price by an Independent System Operator (ISO). Under such circumstances, accurate electricity price forecasting can play a significant role in improving the more reasonable bidding strategies adopted by the electricity market participants. So, they cannot only r...
متن کاملA Hybrid Model for Gefcom2014 Probabilistic Electricity Price Forecasting a Hybrid Model for Gefcom2014 Probabilistic Electricity Price Forecasting
This paper provides detailed information on Team Poland’s approach in the electricity price forecasting track of GEFCom2014. A new hybrid model is proposed, consisting of four major blocks: point forecasting, pre-filtering, quantile regression modeling and post-processing. This universal model structure enables independent development of a single block, without affecting performance of the rema...
متن کامل